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We give a unified approach to lower semicontinuity and almost lower semicon-
tinuity of metric projections P in Cy(T, X), where X is a strictly convex Banach
space. We obtain a characterization theorem on pointwise lower semicontinuity of
P and prove that P has a continuous selection if and only if P is almost lower
semicontinuous. € 1989 Academic Press, Inc.

1. INTRODUCTION

Recently, the problems concerning various continuities of metric projec-
tions in the Banach space Cy(T) of real-valued continuous functions have
been deeply investigated [3, 4, 6, 7, 8, 9, 13, 17-20, 23]. There were some
efforts to generalize the results in Cy(T) to Co(T, X), where X is a strictly
convex Banach space [5, 21]. In this paper, we give a new approach to
perturb a given function in Cy(7, X). This provides a unified way to study
lower semicontinuity, almost lower semicontinuity, and continuous selec-
tions of metric projections P; in Co(7T, X). Some analogous theorems as
those in Cy(T) are obtained or reproved in a new way.

In Section 2, we give a theorem (Theorem 2.5) about perturbation of a
given function; In Section 3, by using the perturbation theorem, we show
that P has a continuous selection if and only if P is almost lower semi-
continuous (Theorem 3.3). In Section 4, we establish a criterion about
pointwise lower semicontinuity of P, (Theorem 4.1) and reprove a charac-
terization theorem about lower semicontinuity of P, (Corollary 4.3).

Now we introduce some notations. Let T be a locally compact Hausdorff
space and X a strictly convex Banach space. Cy(7, X) will denote the
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Banach space of continuous mappings f from T to X which vanish at
infinity, i.e., the set {te T: || f(¢)| y=¢} is compact for each &> 0. The norm
of fin Co(T, X) is defined as

I/l =sup{llf()lx: te T}
For G < Cy(T, X), the metric projection P, from Cy(T, X) to G is

Po(f)={geG:|lf—gl=d(f,G)}, [feCuT, X),

where
d(f,G)=inf{||f—p|: peG}.

In this paper, G will always denote a finite-dimensional subspace of
Co(T, X) and the following notations will be used throughout:
S(X) :=the unit sphere of X,
E(F):={teT: |l f(t)x =S|l for all fin F},
Z(F):={teT: f(t)=0 for all fin F},
card(A) := the cardinal number of A,
G(4):={geG: A= Z(g)},
Gls:={gls:geG},
where 4 denotes a subset of T and F denotes a subset of Cy(7, X).

2. PERTURBATION OF A GIVEN FUNCTION

Lemma 2.1 [10]. Suppose that feCy(T,X)\G and geG. Then
g€ Py(f) if and only if there exist {t,}7 < T and {@,}7 < X*\{0} such that
(1) X e:(f(t)—gt))=1f—gl-Z7 i loil;
(2) X1 9ip(t))=0, for peG.
Remark. The characterization condition given in [10] is slightly

different from conditions (1) and (2). But it is easy to see that they are
equivalent.

Now we are going to establish several technical lemmas for the proof of
the perturbation theorem (Theorem 2.5).

LEMMA 22. For every feCy(T, X), there is a g*e Py(f) such that
E(f—g*)=E(f—Ps(f)) < {teT:g*(t)=g(t) for all ge Ps(f)}.
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Proof. Let g* be in the relative interior of Pg(f). Then for any
g€ P;(f), there is an ¢>0 such that

g*¥+A(g*—g)ePs(f), for |A<e.

Now for any te E(f —g*), we have
I£(2) —g*(2) — A(g*(t) — gDl

<Ilf—g*—AUg*—g)l=d(f,G)=|f—g*|

=[f(t)—g*()l, for [A]<e,
which implies

g*(t)—g(1)=0, teE(f—g*), gePs(f),
since X is strictly convex. Thus,
/(1) =g = /(1) —g*() = f —g*|
=|f—gl. teE(f—g*), gePs(f)
ie.,
E(f—g*)=E(f—-Ps(f) |

LemMma 2.3. Suppose that d(f, G)=1 and E(f — Ps(f))\int Z(G)# .
Then there exist g*e Po(f), A, < T with card(A4,) < oo, and mappings
Jrom A, to S(X) such that

(1) lim max{ye()— (f()—g*O)l: re 4} =0 (1)
(2) dimG|yz ,=dim G|, >1, for k>1; (2.2)
(3) Po, (=10}, for k>1. (23)

Proof. Set fi=flr, and G, =G|, where
T, = {te T:sup{llg(1)l: g€ G with || g] =1} > 1/k}.
Then

@ T, =T\Z(G). (2.4)

Let g, € G such that

gkITkEPGk(fk)- (2.5)
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By Lemma 2.1, there exist B, = {t,,}7*< T, and {¢,,}7*c X*\{0} such
that

Z‘P;k(f(t,k) &t ) =d(fi, Gi) - Z @il (2.6)

Z 0.x(p(1;))=0, for peG. (2.7)
i=1

Since G is finite-dimensional, by selecting a subsequence, we may assume
that

dim G|y» 5 =dim G| g, k=1, (2.8)
klim g:=8%€G. (29)

By (2.4), (2.5), (2.9), and E(f — Ps(f))\int Z(G) # 7, it is not difficult to
verify that

Jim d(f,, Go)=d(f,G)=1, (2.10)

g*eP(f). (2.11)
Meanwhile, (2.8) implies that there exist 0 = j; < j, < --- such that

dim G|z ,=dim G| n p=dim G|, >1, k>1  (212)

where
Jk+1
U B, k=1
i=jr+1
Define
l// (t)__-{(f(t)_gjk+l(t))/d(j}k+l’ij+l)’ 'IEBjk+la
y (f(O)—g)d(f;,G),  teB\Ui,s1 By Jx+1<i<jesr

By (2.6) we know that ¢, are mappings from 4, to S(X). Since X is strictly
convex, it is not difficult to show that (2.6) and (2.7) imply

P, ((f—g)ls)={0}, Jj=1 (2.13)
By using induction and (2.13), we can easily show that

P, W)=1{0}, k=1 (2.14)
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It follows from (2.10) and (2.9) that

Jim max {(1) = (f(1) —g*(D))ll: 1€ A} =0. (2.15)

By (2.11), (2.12), (2.14), and (2,15), we can see that 4,, ¥, and g* satisfy
(2.13(2.3). 1

LeMMa 24. Iffe Cy(T, X) with d(f, G) =1, then there exist g* € Pg(f),
A, < T with card(A,) < co, and mappings Wy, from A, to S(X) such that

(1) lim max{lye() = (f()—g*O): te 4} =0 (216)

(2) Po,Wi)=1{0}, k=1 (2.17)
(3) E(f—g*)cint Z(G(4,)), k=1 (2.18)

Proof. If E(f—Pg(f))cint Z(G), by Lemma 2.2, choose g*e P(f)
such that E(f—g*)=E(f—Pg(f)). Let 1,€E(f—Ps(f)), ¥ulto)=
f(to)—g*(to), Ax={to}. Then (2.16)—(2.18) hold. So, without loss of
generality, we may assume E(f — Pg(f)\int Z(G)# . We proceed with
the proof by induction on dim G.

If dinG=1, then Lemma 24 follows from Lemma 2.3, since
G(A,)={0} for all 4, in Lemma 2.3. Suppose that the conclusion of
Lemma 2.4 is true if dim G <s. Now assume dim G =s+ 1. By Lemma 2.3,
there exist g, e Pg(f), A,,< T with card(4, )< oo, and mappings ¥, ,
from A, , to S(X) such that

Jim max {y, ,(6) = (f(1) —g1(1)]: 1€ 4,1 4} =0; (2.19)
dim G|ye 4, =dim G|, >1, k>1; (2.20)
PG|A“((¢1J¢)= {0}, k1. (2.21)

Set
G*={geG:4,,=Z(g)forall k>1},
f*=r—s.

Then it is easy to see that d(f*, G*)=d(f, G). By (2.20), we get dim G* < s
and

G*={geG: A, ,cZ(g)} =:G(4,,), k=1 (2.22)
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By the inductive hypothesis, there exist g,ePgx(f*), A,,cT with
card(4, ;) < oo, and mappings ¥, , from 4,, to S(X) such that

klifio max{ [, (1) = (f*(t)—g()): te Ay} =0; (2.23)
Peri, (W20)=1{0},  k=1; (224)
E(f*—g,)cint Z(G*(A4,,), k=1 (2.25)
Set
A=A O Ay,
g*=g1+82
_ lpl,k(t)’ tEAl‘ks
Vilt)= {Wz,k(t), te Ay \Ay -

Obviously, g*e Pg(f), card(4,) < oo, and ¥, are mappings from A4, to
S(X). Since g,eG*, A, ,<Z(g,) for all k>1. By (2.19) and (2.23), we
obtain

lim max{[We(t) — (/1) —g*(O)]: te Ai}
< Jim (max{[y,«()— (f())—gu(D): 1€ 41}
+max{|yo(t) — (f*(1) —gAt))ll: te A, })=0.  (2.26)
Equations (2.22) and (2.25) imply
E(f—g*)=E(f*—g,)cint Z(G*(4,.4))
=int Z(G(A,)), k=1 (2.27)
Now suppose ge PGW(://,(). Then

max{ ||y, (1) —g()l: te Ay}
<max{|[y.(1)]: 1€ 4, }=1. (2.28)

Equations (2.21) and (2.28) imply g(¢)=0for te 4, ,. By (2.22), ge G*| ,,.
Similarly, it follows from (2.24) and (2.28) that g(¢)=0 for te A, ,. Thus
g=0, ie.,

P, ()= {0}. (2.29)

Equations (2.26), (2.27), and (2.29) show that A,, ¥, and g* satisfy (2.16),
(2.17), and (2.18). This completes the proof of this lemma. |
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THEOREM 2.5. If fe Co(T, X)\G, then there exist g* € Po(f) and an open
set Vo E(f —g*) such that for any £ >0, there is an f, in Co(T, X) satisfying

(1) If=fill<eg (2.30)
(2) Ps(f.)={gePs(f):V=Z(g—g*)} (2.31)

Proof. Without loss of generality, we may assume d(f, G)=1. By
Lemma 2.4, there exist g* e Py(f), A, < T with card(A4,) < oo, and map-
pings ¥, from A, to S(X) such that (2.16)-(2.18) hold.

Since dim G is finite, there is an open set V' > E(f — g*) such that for any
ge G with E(f —g*) cint Z(g), there holds V< Z(g). Set

5=1—max{|f(t)—g*(t)|: te T\V} >0.

It follows from (2.16) that for some N> 0,

max{[|[Y (1) — (f(1) —g*())l: te A} <6, k=N (2.32)

Since [y (¢)|| =1 for te A,, (2.32) implies
A<V, k>=N.

Suppose A, = {t;;: 1 <i<m,}. Then there are open sets V', such that for
1<i<my, k=N,

ViknVie=,  1<jsmy, i#]; (2.33)
tic€VicV; (2.34)
1t —8*(t) — (f(O) —g*(ON <1k,  teV.  (235)
Let b, , € Co(T, R) such that
biltin)=1;
0<bh, ()<, teT,
bi,k(t)=0’ te T\Vi,k'

Define
fety= 3 valti0)-bislo)

0= (1= ¥ b)) +2%(0)

i=1
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Since || f —g*|| =d(f, G)=1, it is easy to check that
Ifu() —g* (1)
< T Waltzo)l b

10 =g ol (1- 3 but0)
<y b,-,k(t)+<1 _y b,.,,((z)>= 1.
i=1 i=1

Now, for any ge P;(f,), we have

12 fi—g*l =l fi—gll
= max{ || fi(t; ) —g(t ) 1 <i<my}
= max{ ||, (t,,) — (g(t; ) —g* (L ) 1 <i<my}
Zd, Glg)=1,
which implies
d(fe, G)=1; (2.36)
(8—8%) 4, € Pgy, (Y1) (2.37)

By (2.18) and (2.37), we obtain A, cZ(g—g*), ie, g—g*¥eG(4,). It
follows from (2.17) that

E(f—g*)cint Z(G(4,)) = int Z(g —g*),
which implies

VeZ(g—g*)

By (2.34) and the definition of b, ,, fi(t) = f(¢) for te T\V, k= N. Thus,

1/()—g@=1f()—g*DI<l, teV;
I/()—gOl =1fi(t) —gl < 1, teT\V.

The above two inequalities imply g € Pg(f). Hence,

Po(fi)={gePa(f):V=Z(g—g")} (2.38)
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On the other hand, for any ge P;(f) with V< Z(g—g*), we have

1/:(0) — gDl =1 /u(t) —g*(DII<1,  teV, k=N;

I£e(5) — gDl = 1 /() —g() <1, teT\V, k=N,
which imply ge Ps(f,) for k> N. Thus,
Po(fi)>{gePe(f):V=Z(g—g%)}, k=N (2.39)
By (2.35) and the definition of f,, we can derive
1£(6) = fulD)]

% buult)- ult,) = 0 —£"0)|

<max{sup{{[¥.(t;) — (f()—g*(O)l: te Vi) 1<i<m,}
<max{sup{[|(f(#;x) —8*(1:4))
—(f(t)—g*Nl:teV, i} 1<i<my}
+max{||y(t;) — (f(:6) —g* () L <i<my )
<k +max{Y (1) — (f(ti) —g* ) 1<i<m, }. (2.40)
It follows from (2.40) and (2.16) that

Jlim 1= £l =0.
Now, for any ¢ >0, choose n > N such that

If=rall <e (2.41)
Then, by (2.38), (2.39), and (2.41), f, = f, satisfies (2.30) and (2.31). |

Remark. Theorem 2.5 provides a new approach to perturb a given
function which is quite different from the methods used before (cf. [4, 6, 13,
17, 18]). We will see its efficacy in the following sections.

3. ALMOST LOWER SEMICONTINUITY AND CONTINUOUS SELECTION

Recall [12] that P is almost lower semicontinuous (alsc) at fif, for any
&> 0, there is an open neighborhood V of fin Cy(7, X) such that

() {geG:d(g Psh))<e}# .

heV
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P, is said to be alsc if Py is alsc at every f € Cy(T, X). Following the nota-
tion used by Brown [6], we define

PEf)={gePe(f): lim f,=f implies lim d(g, Po(f,))=0}.
By [11, Lemma 3.1], we have the following conclusion:

Lemma 3.1. P is alsc at fif and only if PE(f)# .

P is said to have a continuous selection if there exists a continuous
mapping Q from Cy(T,X) to G such that Q(f)e Pg(f) for each
feCy(T, X). The concept of almost lower semicontinuity, introduced by
Deutsch and Kenderov [127] for the study of set-valued mappings, is
closely related to the existence of continuous selections of set-valued map-
pings. It follows from a general resuit of Deutsch and Kenderov [12] that
if P; has a continuous selection, then P is alsc. Fischer [14] and Li [18],
independently, proved that if G is a finite-dimensional subspace of Co(T, R)
(=:Co(T)) and P is alsc, then P, has a continuous selection. That gave
a positive answer to a problem proposed by Deutsch in [7]. Now, by using
Theorem 2.5, we can generalize Fischer’s and Li’s results:

THEOREM 3.2. If P is alsc, then Pg has a continuous selection.

From Theorem 3.2 and Deutsch and Kenderov’s result mentioned above
follows the following theorem:

THEOREM 3.3. P has a continuous selection if and only if P is almost
lower semicontinuous.

We will prove Theorem 3.2 by showing that P% is Isc if P is alsc. First,
we need some technical lemmas.

LEMMA 3.4. If there exist g* € Pg(f) and an open set V = E(f — g*) such
that

lim sup { inf (Sugllg*(t)—p(l)|l)}=0, (3.1)

&— 0+ Wf~hl <s pePglh)y

then
Pi(f)>{gePs(f):VZ(g—g*)}

Proof. Assume that Lemma 3.4 fails to be true. Then for some p in
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Py(f) with V=Z(p—g*), pé¢ PE(S), ie., there are f,, and 6 > 0 such that
forn>1,

ILf=Jall <1/n,
d(p, Ps(f,)) 2 6.

By (3.1), there exist g, € P;(f,,) such that

lim sup{llg,(1)—g*(1)|: te V'} =0.

By selecting a subsequence, we may assume

lim g,=p*ePq(f).

Then

VoZ(g*-p*)nZ(p—g*) < Z(p—p*).

Set
Pin=8nt(1=2)-(p—p*)+A-(g*—Dp*)
p,=(1—4)-p+4-g*,
n=d(f, G)—max{|| f(¢)—g*(t)|: te T\V} >0.

Then, for 0<i<,
1/a(8) = Pan(ON =1 £u(t) — gu(D) < d(f,, G),  teV;
and for te T\V,

175(2) = Pan(2)]
<L) =D+ 17 (@) = paDN + N ga(1) — p*(2)]
SUn+(=2)-1f=pl+4-1/(@)—g* Ol + g, — p*I
<ln+(1-4)-d(f, G)+ - (d(f, G)—n)+ | g — P*|
=d(f., G)=A-n+1/n+(df, G)—d(f., G) + llg.— p*I.

Thus for 0 < A < 1, there are N(1) > 0 such that

I/ —poall Sd(f,, G),  n2N(A),
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ie, p;.€Ps(f,) for n= N(4). Hence, for 0< 1 <1,

0 <d<liminfd(p, Pg(f,))
<lp=pall +lim infd(p;, Po(f,))
Slp=pal +liminfip, —p, |

=lp—pil =4-llp—g*l,

which is impossible. The contradiction completes the proof of this
lemma. J

LEMMA 3.5. If P; is alsc at fe Cy(T, X), then there g*e Ps(f) and
an open set V> E(f—g*) such that for any ¢>0, there is f, in Co(T, X)

satisfying
(1) If=rfl<sg (3.2)
(2) Po(f)={gePs(f):V<=Z(g—g*)}=P&S) (3.3)
Proof. The conclusion is trivial if fe G. So we may assume f ¢ G. By

Theorem 2.5, there exist g* € P;(f) and an open set V> E(f—g*) such
that

If=fil <& (34)
Po(f)={gePsf):V=Z(g—g*)} (3.5)

Since P is alsc at f, by Lemma 3.1, P%(f)# &. 1t follows from (3.4) and
(3.5) that

P#PESf)c{gePe(f):V=Z(g—g*)}, (3.6)
which implies

lim  sup inf sup | g(t)—g*(t)| =0

e=0+ jf—ni<e 8PN tey
By Lemma 3.4, we obtain
PEf)>{gePslf):V=Z(g—g*)} (3.7)
(3.4)-(3.7) imply (3.2) and (3.3). 1}

Suppose that Q is a mapping from Cy(7, X) to 2€; ie., Q(f) is a subset
of G for each fe Cyo(T, X). Recall that Q is lower semicontinuous (Isc) at
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[ if, for each subset W of Co(T, X) with Q(f)n W # (&, there is an open
neighborhood V of fin Cy(7, X) such that Q(h) n W+ ¢ for each he V.
Equivalently, P is Isc at f if and only if

0(f)=0*(/)
={geQ(f): lim f,=f implies lim d(g, Po(f,)=0},

Q is said to be Isc if Q is Isc at every fin Cy(T, X).

THEOREM 3.6. If P is alsc, then P¥ is Isc.

Proof. Fix fe Co(T, X) and ¢>0. For he Cy(T, X) with || f — k| <e, by
Lemma 3.5, there is A, € Co(T, X) such that
Il —h.|l <e—Ilf—hl;
Pg(h,) = PE(h). (3.8)

Equation (3.8) implies || f—h4,|| <e. Thus, for any ge P¥(f),

d(g, Pt(h))=d(g, Pg(h,)) < P d(g, Ps(f*)),
—f[*li<e

ie.,

sup d(g, P&(h))< sup d(g Po(f*)), ge PE(f)  (39)
1kl <e 0o <e

By the definition of P¥(f) and (3.9), we obtain

lim sup d(g Pi(h))=0, gePX(/f),

=0+ yf—hj<e

which implies that P% is Isc at f. Hence, P& is Isc. |

Proof of Theorem 3.2. It follows from theorem 3.6 and the Michael
selection theorem [22] that P has a continuous selection Q. Since
O(f)e PEf)<= Py(f), Q is a continuous selection for P;. |

Remark. In more general case, Beer studied the lower semicontinuity of
P%. He showed that if P; contracts to PE uniformly in a certain sense, then
P% is Isc [2]. In [14], Fischer proved results similar to those in
Theorem 3.4 in the semi-infinite optimization setting.
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4., CHARACTERIZATION OF POINTWISE LOWER SEMICONTINUITY

THEOREM 4.1. P is Isc at fe Cy(T, X) if and only if
E(f—Ps(f))
cint{te T:te Z(g—p) for all g, pe Ps(f)} =: V. (4.1)

Proof.

NECESSITY. Since Pg is Isc at f, Pg(f)=P¥E(f). By Lemma 3.5, there
exist g* € P;(f) and an open set W E(f — g*) such that

Po(f)=P&(f)={gePe(f): W<=Z(g—g*)} (4.2)
Equation (4.2) implies (4.1).

SUFFICIENCY. By Lemma 2.2, there is g* € Pg(f) such that E(f —g*)=
E(f—Ps(f)). Then the open set Vo E(f—g*). We claim

lim  sup inf sup | g(z)—g*(#)| =0. (4.3)
v

e—=0+ if—hl<e ge Pglh) ;¢

In fact, if (4.3) fails to be true, then for some 6 >0 there exist f, in
Co(T, X) such that | f— f,|| < 1/n and

sup [[g(1) —g*() =26, ge Pe(f,), n=1 (44)

eV

By choosing a subsequence, we may assume that for some g, Ps(f,),
lim g,=gePc(f).
Since V< Z(g —g*), we obtain

lim sup |lg,() — g(1)]|

n2> O el

= lim sup [ g,(1) —g*(1)]

n— X ey

< lim [lg,—g*| =0,

which contradicts (4.4). Thus, (4.3) holds. It follows from (4.3) and Lemma
3.4 that

PYUS) = {gePef):V=Z(g—g*)}=Ps(f),

which implies that Pg is Isc at f. ||
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Remark. For X =R (the real line), this theorem was announced in [4]
as an unpublished theorem of Blatter. Theorem 4.1 can also be derived
from the proof of Theorem 3 and Theorem 9 in [5]. But our proof is new
and is a bonus of the new perturbation method. Theorem 4.1 was announ-
ced and used in [21] to prove an intrinsic characterization condition of the
lower semicontinuity of P,.

COROLLARY 4.2. Py is Isc if and only if (4.1) holds for every f in
Co(T, X).

COROLLARY 4.3 (Brosowski and Wegmann [5]). P is Isc if and only if
the set {teT:teZ(g—p) for all p,gePs(f)} is open for every f in
Co(T, X).

Proof. We only sketch the proof. Write

M(h)y:={teT:teZ(g—p) for all p, ge Pg(f)}.

By Lemma 2.2, E(f— Pg(f)) < M(f). The sufficiency follows immediately
from Corollary 4.2. Now suppose that P is Isc. Fix fe Co(T, X). If M(f)
is not open, let t* € bdM(f). Then we can modify f near ¢* to construct a
new function f* in Co(T, X) such that (cf. [5] for the details)

t* € E(f* — P(f*)\int M(f*).

which contradicts Corollary 4.2. ||
COROLLARY 4.4. For any feCyT,X) and ¢>0, there is an [, in
Co(T, X) such that

M If=rfil<g
(2) Pgislscatf,;

() Po(f)=Ps(f).

Proof. By Theorem 2.5, there exist g*ePg(f) and an open set
Vo E(f —g*) such that for any ¢ >0, there is an f, in Co(T, X) satisfying

If=fell <& (4.5)
Po(f)={gePs(f):V<=Z(g—g*)} (4.6)
Let

n=d(f, G)—max{| f(1) —g*(1)l: e T\V}.
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Then, for te T\ V.

£t} —g*(D)l
<) —g*N+1f =S
<d(f,G)—n+e
<d(f., G)—n+e+(df, G)—d(f., G)).

Since d(-, G) is a continuous function on Cy(7, X), there is a 6 >0 such
that

If() —g*(Dll <d(f., G),  teT\V, 0<e<,
which implies
E(f.—Po(f))cE(f.—g*)=V, 0<e<d.
Hence, by (4.6),

E(f.— Pg(f.))cVcint{teT:te Z(g—p) for all g, pe P(f,)}.

It follows from Theorem 4.1 that P is Isc at f, for each 0 <& < 4. This fact
together with (4.5) and (4.6) shows that f, satisfies (4.2)-(4.4) for
0<e<d. |

The next result follows immediately from Corollary 4.4.

COROLLARY 4.5. Py is always Isc on a dense subset of Cy(T, X).

Remark. Professor Deutsch kindly informed me that Corollary 4.5 also
follows from a general result of Fort [15] (or Kenderov [16]). From that
general result we can obtain a stronger version of Corollary 4.5, which says
that P is always Isc on a dense G; subset of Cy(T, X).

In [4], Blatter and Schumaker studied the uniqueness of continuous
selections of P;. In the remaining part of this section, we will show the
relation between the uniqueness of continuous selections for P, and the
almost Chebyshev property of G.

Recall [4] that Q is called a submapping of P if @(f) < Pg(f) for every
fin Cy(7T, X). Q is called a maximal lsc submapping of P if Q is Isc and
for any Isc submapping S of P, S is a submapping of Q.

COROLLARY 4.6. Suppose that Pg has a continuous selection. Then
PX(fY={S(f): S is a continuous selection for P}, i.e., P& is the maximal
Isc submapping of P;. Moreover, P has a unique continuous selection if and
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only if the lower semicontinuity of Pg at f always implies that Ps(f) is a
singleton.

Proof. Let Q(f)={S(f): S is a continuous selection of Ps}. Then Q is
the maximal Isc submapping of P; [4].

By theorem 3.6, P% is lIsc. So, P¥% is a submapping of Q. Since
S(f) e P4(f) for any f e Cy(T, X) and any continuous selection S of P, Q
is also a submapping of P%. Thus P¥ = is the maximal Isc submapping
of Pg.

Obviously, P; has a unique continuous selection if and only if PE(f) is
a singleton for each fe Co(T, X).

If P; has a unique continuous selection and P, is Isc at f, then
P(f)=P¥(f) is a singleton.

Now assume that the lower semicontinuity of P at f always implies that
P.(f) is a singleton. Fix fe Co(T, X) and g,, g, € P&(f). For any £¢>0, by
Corollary 4.5, there is an f, in Cy(7, X) such that Pg; is Isc at f, and
| f— f.ll <e Since Pg(f,) is a singleton, we have

lg:—gall < SEI& (lg: = Pe(fI + 1182 — Ps(fII)
< lim (d(g1, Po(f.)) +d(gs, Po(f)) =0,
Hence, PX(f) is a singleton, i.e., P; has a unique continuous selection. |}

We say that G is a Z-subspace of Cy(7, X) if no ge G\ {0} vanishes on
an open subset of T If G is a Z-subspace of Cy(7, X), by Theorem 4.1, the
lower semicontinuity of P at f always implies that P;(f) is a singleton.
So, from Corollary 4.6 follows Corollary 4.7.

COROLLARY 4.7. Suppose that G is a Z-subspace of Cyo(T, X). Then P
has at most one continuous selection.

Remark. 1If T is compact and X =R, Corollary 4.7 reduces to a result
of Brown [6].

Now assume that T is a compact metric space and Cy(7, R)=: C(T).
Recall [1] that G is an almost Chebyshev subspace of C(T) if Pg(f) is a
singleton for each fe C(T), except a set of first category in C(T).
Bartelt and Schmidt [1] proved that G is an almost Chebyshev subspace
of C(T) if and only if the lower semicontinuity of P at f always implies
that Pg(f) is a singleton. By this result and Corollary 4.6, we have the
following corollary.
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COROLLARY 4.8. Suppose that T is a compact metric space, G is a finite-

dimensional subspace of C(T), and P has a continuous selection. Then P
has a unique continuous selection if and only if G is an almost Chebyshev

Su

bspace of C(T).
G is an almost Chebyshev subspace of C[a, b] if and only if G is a

Z-subspace of C[a, b] [1]. Thus from Corollary 4.8 follows Corollary 4.9.

COROLLARY 4.9 (Blatter and Schumaker [4]). Suppose that G is a

[inite-dimensional subspace of Cla, b] and Pg has a continuous selection.
Then P has a unique continuous selection if and only if G is a Z-subspace

of C[a, b].
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